Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Emerg Infect Dis ; 29(4): 792-796, 2023 04.
Article in English | MEDLINE | ID: covidwho-2280851

ABSTRACT

Since April 2022, waves of SARS-CoV-2 Omicron variant cases have surfaced in Taiwan and spread throughout the island. Using high-throughput sequencing of the SARS-CoV-2 genome, we analyzed 2,405 PCR-positive swab samples from 2,339 persons and identified the Omicron BA.2.3.7 variant as a major lineage within recent community outbreaks in Taiwan.


Subject(s)
COVID-19 , Humans , Taiwan/epidemiology , COVID-19/epidemiology , SARS-CoV-2/genetics , Disease Outbreaks
2.
Biomed J ; 46(1): 70-80, 2023 02.
Article in English | MEDLINE | ID: covidwho-2176786

ABSTRACT

Since the COVID-19 pandemic was declared, vaccines against SARS-CoV-2 have been urgently developed around the world. On the basis of the mRNA vaccine technology developed previously, COVID-19 mRNA vaccines were promptly tested in animals, advanced to clinical trials, and then authorized for emergency use in humans. The administration of COVID-19 mRNA vaccines has successfully reduced the hospitalization and mortality caused by the viral infection, although the virus continuously evolves with its transmission. Therefore, the development of mRNA vaccine technology, including RNA modification and delivery systems, is well recognized for its contribution to moderating the harms caused by the COVID-19 pandemic. The scientists who developed these technologies, Katalin Karikó, Drew Weissman, and Pieter Cullis, were awarded the 2022 Tang Prize in Biopharmaceutical Science. In this review, we summarize the principles, safety and efficacy of as well as the immune response to COVID-19 mRNA vaccines. Since mRNA vaccine approaches could be practical for the prevention of infectious diseases, we also briefly describe mRNA vaccines against other human viral pathogens in clinical trials.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , COVID-19/prevention & control , COVID-19 Vaccines , Pandemics/prevention & control , mRNA Vaccines
3.
Methods Mol Biol ; 2452: 3-18, 2022.
Article in English | MEDLINE | ID: covidwho-1844256

ABSTRACT

A novel coronavirus (CoV) that emerged in Wuhan, Hubei province in China, in December 2019, has rapidly spread worldwide. Named as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this virus has been responsible for infecting about 153 million people and causing 3 million deaths by May 2021. There is obvious interest in gaining novel insights into the epidemiologic evolution of this virus; however, inappropriate application and interpretation of genomic and phylogenetic analyses has led to dangerous outcomes and misunderstandings. This chapter focuses on not only introducing this virus, its genomic characteristics and molecular mechanisms but also describing the application and interpretation of phylogenetic tree analyses, in order to provide useful information to better understand the evolution and epidemiology of this virus. In addition, recombinant region and genetic ancestry of SARS-CoV-2 remain unknown. It is urgently required to collect samples and obtain related viral genetic data from animal sources for identifying the intermediate host of SARS-CoV-2 that is responsible for its cross-species transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/epidemiology , China/epidemiology , Humans , Phylogeny , SARS-CoV-2/genetics
4.
Microbiol Mol Biol Rev ; 86(2): e0002621, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1765086

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The global COVID-19 pandemic continues to threaten the lives of hundreds of millions of people, with a severe negative impact on the global economy. Although several COVID-19 vaccines are currently being administered, none of them is 100% effective. Moreover, SARS-CoV-2 variants remain an important worldwide public health issue. Hence, the accelerated development of efficacious antiviral agents is urgently needed. Coronavirus depends on various host cell factors for replication. An ongoing research objective is the identification of host factors that could be exploited as targets for drugs and compounds effective against SARS-CoV-2. In the present review, we discuss the molecular mechanisms of SARS-CoV-2 and related coronaviruses, focusing on the host factors or pathways involved in SARS-CoV-2 replication that have been identified by genome-wide CRISPR screening.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Vaccines , Humans , Pandemics/prevention & control , SARS-CoV-2/genetics
5.
mSphere ; 6(2)2021 03 31.
Article in English | MEDLINE | ID: covidwho-1166378

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) carrying the D614G mutation on the spike protein is the predominant circulating variant and is associated with enhanced infectivity. However, whether this dominant variant can potentially spread through the cold chain and whether the spike protein affects virus stability after cold storage remain unclear. To compare the infectivity of two SARS-CoV-2 variants, namely, SARS-CoV-2 variants with spike protein with the D614 mutation (S-D614) and G614 mutation (S-G614), after different periods of refrigeration (4°C) and freezing (-20°C). We also determined the integrity of the viral RNA and the ability of the spike protein to bind angiotensin-converting enzyme 2 (ACE2) after storage at these conditions. The results showed that SARS-CoV-2 was more stable and infectious after storage at -20°C than at 4°C. Particularly, the S-G614 variant was found to be more stable than the S-D614 variant. The spike protein of the S-G614 variant had better binding ability with the ACE2 receptor than that of the S-D614 variant after storage at -20°C for up to 30 days. Our findings revealed that SARS-CoV-2 remains stable and infectious after refrigeration or freezing, and their stability and infectivity up to 30 days depends on the spike variant. Stability and infectivity are related to each other, and the higher stability of S-G614 compared to that of S-D614 may contribute to rapid viral spread of the S-G614 variant.IMPORTANCE It has been observed that variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are more stable and infectious after storage at -20°C than at 4°C. A SARS-CoV-2 S-D614G variant is currently the most dominant variant in circulation and is associated with enhanced infectivity. We compared the stability of two SARS-CoV-2 variants: the early S-D614 variant carrying the D614 spike protein and the new S-G614 variant carrying the G614 spike protein, stored at both 4°C and -20°C for different periods. We observed that SARS-CoV-2 remains stable and infectious after refrigeration or freezing, which further depends on the spike variant, that is, the ability of the spike protein to bind with the ACE2 receptor with higher efficiency. The high stability of the S-G614 variant also explains its rapid spread and infectivity. Therefore, precautions should be taken during and after handling food preserved under cold conditions.


Subject(s)
COVID-19 , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Cold Temperature , Genetic Fitness/genetics , Humans , Mutation , Protein Stability
6.
J Clin Microbiol ; 58(8)2020 07 23.
Article in English | MEDLINE | ID: covidwho-999208

ABSTRACT

Real-time reverse transcription-PCR (RT-PCR) is currently the most sensitive method to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19). However, the correlation between detectable viral RNA and culturable virus in clinical specimens remains unclear. Here, we performed virus culture for 60 specimens that were confirmed to be positive for SARS-CoV-2 RNA by real-time RT-PCR. The virus could be successfully isolated from 12 throat and nine nasopharyngeal swabs and two sputum specimens. The lowest copy number required for virus isolation was determined to be 5.4, 6.0, and 5.7 log10 genome copies/ml sample for detecting the nsp12, E, and N genes, respectively. We further examined the correlation of genome copy number and virus isolation in different regions of the viral genome, demonstrating that culturable specimens are characterized by high copy numbers with a linear correlation observed between copy numbers of amplicons targeting structural and nonstructural regions. Overall, these results indicate that in addition to the copy number, the integrity of the viral genome should be considered when evaluating the infectivity of clinical SARS-CoV-2 specimens.


Subject(s)
Betacoronavirus/growth & development , Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Virus Cultivation/methods , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Correlation of Data , Humans , Nasopharynx/virology , Pandemics , Pharynx/virology , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2
7.
Emerg Microbes Infect ; 9(1): 1457-1466, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-599993

ABSTRACT

Taiwan experienced two waves of imported infections with Coronavirus Disease 2019 (COVID-19). This study aimed at investigating the genomic variation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Taiwan and compared their evolutionary trajectories with the global strains. We performed culture and full-genome sequencing of SARS-CoV-2 strains followed by phylogenetic analysis. A 382-nucleotides deletion in open reading frame 8 (ORF8) was found in a Taiwanese strain isolated from a patient on February 4, 2020 who had a travel history to Wuhan. Patients in the first wave also included several sporadic, local transmission cases. Genomes of 5 strains sequenced from clustered infections were classified into a new clade with ORF1ab-V378I mutation, in addition to 3 dominant clades ORF8-L84S, ORF3a-G251V and S-D614G. This highlighted clade also included some strains isolated from patients who had a travel history to Turkey and Iran. The second wave mostly resulted from patients who had a travel history to Europe and Americas. All Taiwanese viruses were classified into various clades. Genomic surveillance of SARS-CoV-2 in Taiwan revealed a new ORF8-deletion mutant and a virus clade that may be associated with infections in the Middle East, which contributed to a better understanding of the global SARS-CoV-2 transmission dynamics.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Genome, Viral , Pneumonia, Viral/virology , Animals , Betacoronavirus/classification , Betacoronavirus/isolation & purification , COVID-19 , Cell Line , Chlorocebus aethiops , Haemophilus parainfluenzae/isolation & purification , Humans , Middle East , Open Reading Frames , Pandemics , Phylogeny , RNA, Viral , SARS-CoV-2 , Sequence Deletion , Taiwan , Travel , Vero Cells , Virus Cultivation , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL